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ABSTRACT
This paper provides a topic model for extracting topic evolu-
tions as a corpus-wide transition matrix among latent topics.
Recent trends in text mining point to high demand for

exploiting metadata, i.e., data about data. Especially, ex-
ploitation of reference relationships among documents in-
duced by e.g. hyperlinking Web pages, citing scientific ar-
ticles, tumblring blog posts, retweeting tweets, etc, is put
in the foreground of the effort to achieve an effective min-
ing. We focus on scholarly activities and propose a new
topic model for obtaining a corpus-wide view on how re-
search topics evolve along reference relationships among sci-
entific articles. Our topic model, called TERESA, extends
latent Dirichlet allocation (LDA) by introducing a corpus-
wide topic transition probability matrix, with which we model
reference relationships among articles as transitions between
latent topics. Our approximated variational inference up-
dates LDA posteriors and topic transition posteriors alter-
nately. The main issue is execution time, because the time
complexity is proportional to MK2, where K is the num-
ber of topics and M is the number of reference relationships
(i.e., links in citation network). Therefore, we accelerate the
inference with Nvidia CUDA. We prove the effectiveness of
TERESA by introducing a new evaluation measure called
diversity plus focusedness (D+F). We also present examples
of topic evolutions extracted by our method.

Categories and Subject Descriptors
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1. INTRODUCTION
Intensive analysis of reference relationships among docu-

ments is a key factor to success in today’s text mining. In
fact, this type of relationship prevails. For example, hy-
perlinking Web pages, citing academic articles, tumblring
blog posts, retweeting tweets, etc. induce such relationships
among documents. Classic link analysis [17, 9] puts less em-
phasis on text data found in each document. In contrast,
we adopt LDA [4], a promising framework for effective text
mining, and extend it for exploiting reference relationships.

In this paper, we focus on academic activities and propose
a new LDA-like topic model for analyzing reference rela-
tionships among scientific articles. Since our model extracts
Topic Evolutions from RE ferences in Scientific Articles, we
call it TERESA by concatenating the italicized capital let-
ters. The most important outcome obtained by TERESA
is a corpus-wide topic transition matrix whose (i, j)th entry
gives the posterior transition probability from topic tj to
topic tj . Roughly, when the articles containing topic ti with
a high probability are often cited by the articles containing
topic tj with a high probability, the (i, j)th entry of this ma-
trix gives a high transition probability. We can interpret this
matrix as a summary of frequent topic evolutions latent in
an article set. We call a task to extract a set of corpus-wide
topic transition patterns topic evolution analysis.

The main contributions of this paper are as follows:

1. This paper proposes a method for topic evolution anal-
ysis, where we can obtain a corpus-wide and directed
relationships among topics. First, TERESA provides a
corpus-wide view on how research topics evolve along
reference relationships. Our aim is not to obtain an
accumulation of local views, e.g. a series of topic tran-
sition patterns between two adjacent time points along
the time axis [3, 18]. This type of accumulation of lo-
cal views makes it difficult to get a global view on
how topics interrelate. Second, TERESA extracts di-
rected relationships among topics. Therefore, we can
respect the direction intrinsic to every citation, though
some preceding works neglect the direction by regard-
ing each relationship as symmetric [15, 5]. For eval-
uation, we devise a new measure called diversity plus
focusedness (D+F) and compare TERESA with LDA.

2. This paper proposes an acceleration of inference for
TERESA. We employ variational Bayesian inference
(VB) for obtaining an estimation of the posterior pa-
rameters. In our VB, a large number of posterior pa-
rameters can be updated independently. Therefore,



Figure 1: A trimmed portion of a topic evolution network extracted from the CORA data set. The number
of topics is 300. Each topic is presented by the most frequent 21 words. Thicker arrows correspond to topic
transitions of larger probability. We can find interesting relationships among the topics related to machine
learning, natural language processing, data mining, etc. This global view on how topics evolve in the CORA
data set was obtained as a result of variational Bayesian inference executed on Nvidia GTX580.

an efficient parallelization exists. To implement such
a parallelization, we use Nvidia CUDA compatible de-
vices, on which hundreds of threads can run in parallel.

Figure 1 is an example of the result of topic evolution
analysis by TERESA. Each topic is presented by the 21
most frequent words placed in the same box, and each topic
evolution is depicted as a directed arrow. This result is ob-
tained by VB accelerated with Nvidia GTX580. We call the
diagrams given by TERESA topic evolution network.
This paper is organized as follows. Section 2 gives preced-

ing works related to our approach. Section 3 presents the
detailed description of TERESA as well as a parallelization
method with Nvidia CUDA compatible devices. Section 4
contains the definition of our new evaluation measure and
the results of evaluation experiment. Section 5 concludes
the paper with discussions and future works. For the rest of
the paper, we will use the symbols defined in Table 1.

2. RELATED WORKS
In social media, we meet a wide variety of interactions

among entities, e.g., persons, documents, products, places,
images, movies, etc. Compelling data mining methods are
expected to exploit such relationships observable among var-
ious types of entities. This paper focuses on reference rela-
tionships among scientific articles, because this type of re-
lationship may help us to find papers we can cite and to
predict what kind of research will follow ours.
Many methods are proposed to use reference relationships

among scientific articles for topic extraction. However, our
method is different from them as is discussed below.

2.1 Model Complexity
Nallapati et al. [14] propose a method for modeling topic

transitions among documents. While we can find the works

that do not give any direct modelings of relationships of
topic distributions between cited and citing documents [13,
7, 11], Nallapati et al. explicitly model transitions of topic
distributions among documents as “flows” of topics. How-
ever, their probabilistic model has K flow parameters at
every link in citation network. Therefore, the complexity
of the parameters for modeling citation links amounts to
O(MK), where K is the number of topics and M is the
number of references, i.e., the number of links in citation
network. It can be said that this model aims at giving an
accumulation of local transition patterns, and thus that it
is difficult to obtain a global view on how topics are related
to each other. We may repeat the same discussion with
respect to [19], where relationships of topic distributions
among documents are modeled as Markov random fields.
Further, Ren et al. [18] modifies HDP [20] so that we can
distill topic transitions between adjacent time points along
the time axis. That is, they consider topic transitions not
between linked documents as in [14] but between adjacent
time points. Therefore, the complexity of the parameter
space is reduced. However, this proposal also makes us un-
comfortable with respect to the issue how we can integrate a
pile of time-dependent topic transitions to obtain a unified
view on how topics interrelate. A similar discussion may
also be valid for [3, 22].

In contrast, TERESA extracts a single K ×K matrix of
topic transition probabilities and thus has a smaller number
of parameters for modeling citation network of scientific arti-
cles. In this manner, we obtain a single corpus-wide view of
topic interaction as a digraph whose vertices are latent top-
ics and whose weighted arcs are transitions among topics
accompanied with their probabilities (Figure 1). Therefore,
the result of our topic evolution analysis is easy to grasp.

2.2 Computation Acceleration



Table 1: Definitions of Symbols
D = {d1, . . . , dJ} set of documents
V = {v1, . . . , vW } set of words
T = {t1, . . . , tK} set of latent topics
Cj = {dj1 , . . . , djCj

} set of documents cited by document dj

xj = {xj1, . . . , xjnj} word tokens in document dj
zj = {zj1, . . . , zjnj} topic assignments in document dj

θj = (θj1, . . . , θjK) θjk, probability that a word token in document dj is assigned to topic tk.
ϕk = (ϕk1, . . . , ϕkW ) ϕkw, probability that a token of word vw is assigned to topic tk.
rk = (rk1, . . . , rkK) rkk′ , transition probability from topic tk to topic tk′ .

α = (α1, . . . , αK) parameters of the Dirichlet prior for the topic multinomial parameters θ1, . . . , θJ
β = (β1, . . . , βW ) parameters of the Dirichlet prior for the word multinomial parameters ϕ1, . . . , ϕK

γ = (γ1, . . . , γK) parameters of the Dirichlet prior for topic transition multinomial parameters r1, . . . , rK

πjw = (πjw1, . . . , πjwK) variational probabilties that a token of word vw in document dj is assigned to each topic
λj = (λj1, . . . , λjK) variational Dirichlet posterior parameters corresponding to θj
µk = (µk1, . . . , µkW ) variational Dirichlet posterior parameters corresponding to ϕk

νk = (νk1, . . . , νkK) variational Dirichlet posterior parameters corresponding to rk

τ the mixing proportion of the topic multinomial parameters of the cited documents
ωjj′ the weight of document dj′ with respect to document dj

Existing topic models provide an analysis of reference re-
lationships mainly with the following two approaches: es-
tablishing links among topic multinomial probabilities via
Dirichlet processes [18, 24] or via logistic normal distribu-
tions[14, 23]. The inference for the former approach is com-
plicated due to its nonparametric nature. This type of ap-
proach is not discussed any further in this paper. The latter
approach is also intricate, because the model has a part of
its parameters in K × K dense covariance matrices, which
need to be inverted. Therefore, covariance matrices used for
logistic normal are often assumed to be diagonal [3, 1, 8].
One important reason this approach avoids dense matrices
is that it considers topic transitions at many different places
in observed data, e.g. at all citation links or at all pairs of
adjacent time points along the time axis, as is discussed in
Section 2.1. Consequently, many matrices should be taken
into consideration in modeling, and thus the assumption of
sparseness is required to accelerate inference.
In contrast, TERESA has a single K×K matrix to model

topic transition probabilities. Therefore, we have no reason
to make this matrix sparse. However, our VB inference has
a time complexity proportional to MK2, where M is the
number of citation links. Therefore, we have decided to use
GPU to accelerate the inference.

3. PROPOSAL

3.1 Generative Description
First, we describe how documents are generated by our

topic model, TERESA. We extend LDA by introducing a
corpus-wide topic transition matrix R. The (k, k′)th entry
rkk′ of R means the probability of the transition from topic
tk to topic tk′ . TERESA generates documents as follows:

1. For each topic tk ∈ T , k = 1, . . . ,K, draw a word
multinomial distribution Multi(ϕk) from the corpus-
wide word Dirichlet prior distribution Dir(β). The wth
entry ϕkw of ϕk is the probability that word vw ∈ V is
used to express topic tk. The wth hyperparameter βw

of Dir(β) corresponds to word vw.

2. For each topic tk ∈ T , k = 1, . . . ,K, draw a topic
transition multinomial distribution Multi(rk) from the
corpus-wide topic transition Dirichlet prior distribu-
tion Dir(γ). The k′th entry rkk′ of rk is the transition
probability from topic tk to topic tk′ . The k′th hy-
perparameter γk′ of Dir(γ) corresponds to topic tk′

appearing in the citing documents, not in the cited
documents. The corpus-wide topic transition proba-
bility matrix R is obtained by setting the kth row of
R to rT

k , i.e., R = (r1, . . . , rK)T .

3. For each document dj ∈ D, j = 1, . . . , J ,

(a) Draw a topic multinomial distribution Multi(θj)
from the corpus-wide topic Dirichlet prior distri-
bution Dir(α). The kth entry θjk of θj is the
probability that any word in document dj is used
to express topic tk. The kth hyperparameter αk

of Dir(α) corresponds to topic tk.

(b) Let Cj ⊆ D be the set of the documents cited by
document dj . We obtain a new topic multino-
mial distribution with parameters (ηj1, . . . , ηjK)
by combining topic multinomial parameters lin-
early as follows:

ηj ≡ (1− τ)θj + τ
∑
j′

ωjj′R
T θj′ (1)

where ωjj′ is the weight of document dj′ with re-
spect to document dj .

∑
j′ ωjj′ = 1 holds for

every j, where ωjj′ = 0 for dj′ ̸∈ Cj . For simplic-
ity, we set ωjj′ = 1/Cj when dj′ ∈ Cj . Obviously,
TERESA is reduced to LDA when τ = 0. In the
evaluation experiment, we tested the values from
0.1 to 0.9 with step size 0.1 for τ .

(c) Let nj be the length of document dj . For each
word token xji, i = 1, . . . , nj , draw a topic from
Multi(ηj) and set the drawn topic as the value of
the latent variable zji. Then, draw a word from
Multi(ϕzji) and set the drawn word as the value
of the observed variable xji.



Figure 2: Three examples of topic evolution networks extracted by TERESA. In this figure, topics are
depicted just as a gray oval. All examples are obtained for the HEP-PH data set with the same settings of
experiment (K = 300, τ = 0.2). Each instance of our VB inference is initialized by randomly assigning each
word tokens to a topic. Therefore, different results are obtained for different instances of VB inference as in
case of LDA. Practically, TERESA can be applied to the same data set repeatedly, and then users can use
any of the results to discover interesting transition patterns.

3.2 Inference and Its Parallelization
Second, we describe how the posterior distributions of

TERESA can be inferred. TERESA extends LDA by intro-
ducing a topic transition matrix R. However, this matrix
R is of size O(K2) and increases the computational burden
of inference. While the time complexity of the inference for
LDA is only proportional to K, that for TERESA is propor-
tional to K2. Therefore, we need to accelerate our inference.
We employ variational Bayesian inference (VB) [4] for an

approximated estimation of posterior parameters, because
VB is suitable for an efficient parallelization. Zhai et al.
subtly discuss why VB can be efficiently parallelized [26].
However, we do not consider a parallelization with OpenMP
and/or MPI, which is considered by Zhai et al. We consider
a parallelization with Nvidia CUDA compatible devices, be-
cause our VB frequently performs the same operation on
hundreds of different data simultaneously and favors SIMD
architecture, which is implemented by Nvidia GPUs. In this
paper, we assume that the input data can be stored on the
device memory of GPU without being split into many sub-
sets. Therefore, VB is not seriously affected by the latency
during a data transfer between CPU and GPU, because such
transfer occurs only before and after the computation on
GPU, not in the course of the computation.
With respect to VB for LDA, the inaugural work by Blei

et al. [4] contains detailed descriptions. Therefore, most
details can be referred to [4]. Here we show the update for-
mulae for the posterior parameters without derivation. Ap-
pendix A only gives derivations required for TERESA. Our
approximated variational inference updates LDA posteriors
and topic transition posteriors alternately.
Let πjwk be the variational posterior probability that word

vw expresses topic tk in document dj . Note that
∑

k πjwk =
1 for every pair of j and w. Let Dir(λj) be the variational
Dirichlet posterior distribution for the topic multinomial dis-
tribution Multi(θj). Further, let Dir(µk) be the variational

Dirichlet posterior distribution for the word multinomial dis-
tribution Multi(ϕk). Then, based on the discussion in [4],

πjwk ∝ expΨ(λjk) ·
expΨ(µkw)

expΨ(µk0)

µkw = βw +
∑
j

njwπjwk (2)

where Ψ(·) represents digamma function, µk0 is defined to
be

∑
w µkw, and njw is the number of the occurrences of

word vw in document dj . Obviously, (πjw1, . . . , πjwK) can
be updated in parallel for different pairs of j and w. Further,
µkw can be updated independently for different pairs of k
and w. Therefore, the updates in Eq. (2) are efficiently
parallelized by using GPU.

With respect to λjk, we use the following update for LDA:

λjk = αk + ⟨njk⟩, (3)

where ⟨njk⟩ ≡
∑

w njwπjwk. However, in TERESA, the gen-
eration of word tokens in document dj is affected not only
by the topic distribution of dj but also by those of the docu-
ments cited by dj . Therefore, we obtain a completely differ-
ent update formula. Let Dir(νk) be the variational Dirich-
let posterior for the topic transition multinomial Multi(rk).
Then, λjk can be updated by using the equation below:

λjk ≈ αk + (1− τ)⟨njk⟩

+
1

Ψ′(λjk)
· τ

λj0

∑
j′

ωj′j

∑
k′

⟨nj′k′⟩
{
Ψ(νkk′)−Ψ(νk0)

}
(4)

where νk0 ≡
∑

k′ νkk′ , λj0 ≡
∑

k λjk, and Ψ′(·) is trigamma
function. Recall that ωj′j = 0 when document dj is not
cited by document dj′ . Further, note that λj0 is equal to∑

k αk + nj and thus does not depend on λjk. Eq. (4) is
of the form x = a + b/Ψ′(x), which can be solved by a



binary search for the constants a and b. Therefore, based on
Eq. (4), we can obtain an updated value for λjk. Since the
right hand side of Eq. (4) does not contain λjk′ for k′ ̸= k
and λj0 is a constant when αks are fixed, we can update λjk

in parallel for different pairs of j and k.
However, the approximation we introduce for obtaining

Eq. (4) is not good when λjk is small (cf. Eq. (14)). Con-
sequently, λj0 becomes different from

∑
k αk + nj after up-

dating each λjk. Therefore, we rescale λj1, . . . , λjK to make
λj0 equal to

∑
k αk + nj after an update of K parameters

λj1, . . . , λjK for a fixed j. Inferences with less approxima-
tion can be achieved by a gradient-based method. Although
we implemented an optimization using L-BFGS [16, 10],
the running time was prohibitively long, because we should
call L-BFGS once for each document in each iteration to
solve a K-dimensional optimization problem. Therefore, it
is reserved as future work to make gradient-based inferences
practical.
The topic transition posterior parameters νkk′ are up-

dated by using the following formula:

νkk′ = γk′ + τ
∑
j

⟨njk′⟩
∑
j′

ωjj′
λj′k

λj′0
(5)

Since λj′k/λj′0 is the posterior probability of topic tk in doc-
ument dj′ , νkk′ is updated by using linear combinations of
topic probabilities along citation links. This is occasionally
similar to the proposal in [14]. The derivation of the above
update formulae for λjk and νkk′ is included in Appendix A.

3.3 Implementation
We implemented the inference for TERESA as follows:

1) Initialize the assignment of each word token to a topic
randomly selected from {t1, . . . , tK}; 2) Run 500 iterations
of collapsed Gibbs sampling (CGS) for LDA [6]; 3) Initial-
ize the posteriors πjwk, λjk, and µkw of TERESA by us-
ing the result of CGS, and initialize νkk′ by using these
initialized posteriors; and 4) Run 50 iterations of VB for
TERESA. The Dirichlet hyperparameters are updated by
Minka’s method [12].
We have tested many settings for GPU acceleration of VB.

We obtained various wall-clock running times as in Table 2.
Each running time is the time required for one iteration of
VB, which is obtained by dividing the total running time
of 50 iterations of VB by 50. We used GPU only for VB,
not for the initialization by CGS for LDA. Table 2 also con-
tains per-iteration running times obtained for Intel Core i7
CPUs. Therefore, we can compare the efficiency achieved
by multithreading on Core i7 CPUs with that achieved by
multithreading on GeForce GPUs. We fixed the number of
GPU threads to 512 for ease of comparison between different
types of GPU.
While it is known that collapsed variational Bayesian in-

ference (CVB) [21, 2] is also suitable for parallelization by
GPUs [25], it is reserved as future work.

4. EXPERIMENT

4.1 Data Sets
We employed two data sets available from the Web in our

experiment. Their specifications are presented in Table 3.
The one data set is the CORA data set1, often used for

1http://people.cs.umass.edu/~mccallum/data.html

Table 2: Running Time per VB Iteration (sec).
CORA data set (K = 300)

8 threads on i7-2600K @ 3.40GHz 3,000
8 threads on i7 950 @ 3.07GHz 2,200

8 threads on i7 X 990 @ 3.47GHz 1,500
12 threads on i7-3930K @ 3.20GHz 710

1 block of size 512 on GTX 580 @ 1.54GHz 170
1 block of size 512 on GTX 570 @ 1.56GHz 166

HEP-PH data set (K = 300)
8 threads on i7 970 @ 3.20GHz 29,000

1 block of size 512 on GTX 580 @ 1.54GHz 840
1 block of size 512 on GTX 580 @ 1.59GHz 810

the experiments related to citation analysis. The other is
the HEP-PH data set, a set of tex documents along with a
citation graph available at KDD Cup 2003 Web site2. Each
tex document in the HEP-PH data set corresponds to a pa-
per in the hep-ph portion of the arXiv. For both data sets,
we removed stop words and applied a Porter’s stemmer. We
did not remove any tex commands from the HEP-PH data
set, because we wanted to know what kind of special sym-
bols (e.g. \langle, \widehat, \dag, etc) are likely to be
used in a particular discipline of physics.

We checked the soundness of inference by calculating per-
plexity [4] for 10% randomly chosen word tokens, whose
number is denoted by Ntest. The perplexity is defined as

perplexity ≡ exp
{
−

∑
j

∑
i

log
∑
k

λjkµkxji

/
Ntest

}
. (6)

We had a perplexity around 570 for the CORA data set after
CGS for LDA, and the perplexity was not significantly mod-
ified by VB for TERESA. For the HEP-PH data set, we had
a perplexity around 710 after CGS for LDA, and the perplex-
ity was also not significantly modified by VB for TERESA.
These are the perplexities obtained when K = 300. Since
TERESA did not significantly modify the perplexity ob-
tained as a result of CGS for LDA, we could extract a corpus-
wide view of topic transitions by TERESA without affecting
the generalization power of LDA.

4.2 Evaluation Method
As a quantitative measure for evaluating the quality of

topic evolution analysis, we devise a new measure called di-
versity plus focusedness (D+F) based on the posterior prob-
abilities of topic transitions. Note that the posterior proba-
bility of the transition from topic tk to topic tk′ is νkk′/νk0.

D+F score is defined by combining the two measures,
transition diversity and expected focusedness:

• Transition diversity. Let P (tk) =
∑

j λjk/
∑

j,k λjk

and PTr(tk′ |tk) = νkk′/νk0. P (tk) is the posterior
probability of the occurrence of topic tk. Then the
posterior probability of the transition to topic tk can
be written as PTo(tk) =

∑
k′ P (tk′)PTr(tk|tk′). By us-

ing PTo(tk), we define transition diversity as follows:

TrDiv ≡ −
∑
k

PTo(tk) logPTo(tk). (7)

2http://www.cs.cornell.edu/projects/kddcup/
datasets.html



Figure 3: Two trimmed portions of topic evolution networks extracted by TERESA from the CORA data
set for K = 300. Each topic is represented by the most frequent 21 words. Thicker arrows correspond to
topic transitions of larger probability. VB was run on Nvidia GTX580 @ 1.59GHz . The running time of the
inference containing CGS for LDA was around 9,200 seconds with Intel Core i7-2600K @ 3.40GHz.

TrDiv is an entropy measure. When TrDiv is large,
the transition to each topic occurs equally often. This
means that the topic model under evaluation can ex-
tract topics so that every topic joins a corpus-wide
topic evolution equally. In other words, no topics are
neglected in topic evolution analysis.

• We define a measure called focusedness as follows:

Foc(tk) ≡
∑
k′

PTr(tk′ |tk) logPTr(tk′ |tk), (8)

which is a negative entropy measure and is thus less
than or equal to 0. When Foc(tk) is close to 0, only a
limited number of topics are frequently reached from
topic tk. Further, we obtain an expected focusedness
as follows:

EFoc ≡
∑
k

P (tk)Foc(tk). (9)

When EFoc is large, the probability distribution of
the transitions from any topic is highly skewed. In
other words, only a limited number of transition edges
starting from each node have a large probability.

D+F is defined to be the sum of TrDiv and EFoc. When
D+F is large, all topics are equally visited, and, at the same
time, the choice of transition destination is highly selective.
We contend that topic evolution analyses that can give larger
D+F are better. We give a rationale for this contention by
considering three extreme cases.
First, assume that the transition probability matrix is

the identity matrix. Then TrDiv = −
∑

k P (tk) logP (tk)

and EFoc = 0. Therefore, D+F is equal to the entropy
−
∑

k P (tk) logP (tk), which is larger when P (tk)s show less
differences. In this case, we extract the topics that are to-
tally “independent” in the sense that each topic only transits
to itself. Of course, articles in reality may cite articles from
heterogenous research fields. However, it is desirable to ex-
tract relatively independent components where the transi-
tions among different components rarely occur. Therefore,
it can be said that a larger D+F is better.

Second, assume that the transition probability matrix is
a matrix all of whose columns except one are zero vectors.
Then TrDiv = 0 and EFoc = 0. Therefore, D+F is 0.
In our experiment, we found that smaller values of D+F
corresponded to an inference of poor quality. To be precise,
it was observed that, when the inference was not successful,
a large number of transitions pointed to a limited number
of topics, which correspond to a vague content. Typically,
such topics were represented by the words expressing vague
concepts or by the words similar to stop words. In this
case, the transition matrix had large values only in a limited
number of columns. Therefore, it can be said that D+F
should be substantially larger than 0.

Third, assume that all entries of the transition probability
matrix are 1/K. Then TrDiv = logK and EFoc = − logK.
Therefore, D+F is 0. This matrix means that all transitions
are equally frequent, and thus the matrix corresponds to no
meaningful topic evolution analyses. It is confirmed again
that D+F should be substantially larger than 0.

The latter two types of topic transition probability matrix
is not informative, and the first one is, in a sense, an unreach-
able ideal. Therefore, we consider that a larger D+F value



Figure 4: Two trimmed portions of topic relationships extracted by TERESA from the HEP-PH data set.
Each topic is represented by the most frequent 30 words. Thicker arrows correspond to topic transitions of
larger probability. VB was run on Nvidia GTX580 for K = 300. The running time was around 67,000 seconds.

corresponds to a better topic evolution analysis, though we
cannot reach an extreme case where the transition matrix is
the identity matrix. Each document set may have its own
largest among the reachable D+F scores.

4.3 Evaluation Results
Figures 5 and 6 present the evaluation results for the

CORA data set when K = 300 and K = 200, respectively,
where we use the proposed measure D+F. Since these two
figures makes no large difference, we only provide the results
for K = 300 with respect to the HEP-PH data set in Fig-
ure 7. All line graphs contain the results when we choose the
value of τ from 0.1 to 0.9 with step size 0.1. The horizontal
axis represents τ . The vertical axis represents D+F score.
We executed ten instances of VB inference, and the mean
of the corresponding ten D+F scores is presented at each
value of τ . When τ = 0 and τ = 1, D+F was 0, though not
depicted in the graphs. The error bars on each graph show
the width of plus/minus one standard deviation.
Solid and dashed lines show the results after 50 iterations

and those after one iteration of VB inference, respectively.
Therefore, dashed lines correspond to the cases where νkk′ is
obtained directly from the results of CGS for LDA by apply-
ing Eq. (5). In contrast, solid lines correspond to the cases
where we alternately update LDA posteriors and topic tran-
sition posteriors 50 times. Namely, the difference between
the solid line and the dashed line in each graph corresponds
to the difference between TERESA and LDA. As is shown
in each graph, TERESA can give a better topic evolution
analysis for smaller values of τ . However, when τ is close
to 1, TERESA seems to put too much emphasis on citation
data and thus fails to achieve a balanced inference over text
data and citation data. We can recommend 0.1 or 0.2 for
the value of τ .

4.4 Examples of Topic Evolutions
We have already given an example of the results of topic

evolution analysis in Figure 1, where we can find several
interesting transitions. For example, the topic seemingly
corresponding to machine translation (represented by trans-
lat, languag, system, english, machin, cross, automat, etc)
and the topic seemingly corresponding to speech recogni-
tion (represented by speech, recognit, system, word, speaker,
model, recogn, etc) point to each other with a thick arrow.

That is, we can reveal that machine translation has a close
bi-directional relationship with speech recognition based on
the result given by TERESA.

More examples are presented in Figures 3 and 4. Fig-
ure 3 contains the examples of topic evolutions extracted
from the CORA data set. On the top panel of Figure 3,
the word network appears in several boxes. However, the
boxes representing the topics related to network protocols
(i.e., the boxes containing the words network, protocol, in-
ternet, servic, multicast, etc) and the boxes representing the
topics related to neural networks (i.e., the boxes containing
the words network, neural, learn, train, etc) are never con-
nected. This conforms to our intuition. On the bottom
panel of Figure 3, the topic seemingly related to Bayesian
statistical analysis (represented by model, estim, data, dis-
tribut, statist, bayesian, paramet, etc), has incoming arcs
both from the topic seemingly related to MCMC inferences
(represented by chain, markov, carlo, mont, converg, etc),
and from the topic seemingly related to bioinformatics (rep-
resented by sequence, protein, dna, molecular, align, etc).
We can guess that some papers on Bayesian methods were
written based on the preceding works related to MCMC in-
ferences and also on the works related to bioinformatics.

We present the examples of topic evolutions extracted
from the HEP-PH data set in Figure 4. On the left panel,
the topic at the top left corner has the word dag as the most
frequent word, which is the mathematical symbol “†” often
used in expressing the unitarity of matrices. This topic and
the topics that have incoming arcs from it are seemingly
related to penguin diagram (represented by penguin, decai,
ckm, asymmetri, etc). On the right panel, we can find a sim-
ilar topic (represented by penguin, decai, asymmetri, etc) at
the left center position. This topic has a thin arc coming
from the topic represented by decai, quark, hadron, semilep-
ton, etc, and this topic has bidirectional relationships with
the topics that are also represented by semilepton, hadron,
etc. However, the word semilepton does not appear on the
left panel of Figure 4 at the position close to the topic related
to penguin diagram. Therefore, we can guess that the papers
discussing penguin diagram cite the papers on semileptonic
decay only in a limited frequency, and thus that semilep-
tonic decay is not a main topic of the papers cited by the
papers on penguin diagram. In this manner, we can com-
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Figure 5: D+F scores for CORA (K = 300).
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Figure 6: D+F scores for CORA (K = 200).

pare topic evolution networks given by different executions
of VB on the same data set to obtain a more robust and
comprehensive observation.

4.5 Usage
As in case of LDA, TERESA gives different inference re-

sults for different random initialization. Figure 2 presents
three different topic transition networks extracted from the
HEP-PH data set by TERESA under completely the same
setting, i.e., K = 300 and τ = 0.2. However, TERESA can
provide a corpus-wide view on how topics interrelate. There-
fore, users of our method can run the inference several times
on the same data set under the same setting and inspect the
obtained topic evolution networks to crop interesting por-
tions from each result and then to compare those cropped
portions. In contrast, when we use the methods that give
a pile of local topic transition patterns, as are enumerated
in Section 2, this type of usage is hardly realizable, because
it is difficult, in the first place, to integrate local views for
obtaining a unified view on topic evolutions.

5. CONCLUSION
This paper provides an LDA-like topic model for extract-

ing a corpus-wide view on how latent topics interrelate in
a given set of scientific articles. While many existing ap-
proaches provide an accumulation of a large number of local
views, our approach, TERESA, can give a single global view.
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Figure 7: D+F scores for HEP-PH (K = 300).

Since topic modeling is primarily a method of dimensional-
ity reduction, TERESA gives a “projection” of complicated
semantical relationships among documents as a single tran-
sition matrix. Practically, we may run our method repeat-
edly on the same data set and obtain multiple “projections”
to find interesting topic evolutions, as we have done in Sec-
tion 4.4 with respect to the figures presented in this paper.

The only weak point of our method is the approxima-
tion introduced to obtain a non-gradient-based inference (cf.
Eq. (14)). Therefore, the most important future work is to
devise an inference with less approximation.
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APPENDIX
A. DERIVATION

We have the full joint distribution of TERESA as follows:

p(x,z, θ, ϕ,R|α, β, γ) =
∏
j

p(θj |α) ·
∏
k

p(ϕk|β)

·
∏
k

p(rk|γ) ·
∏
j

∏
i

p(zji|θ,R)p(xji|ϕzji) (10)

where we omit free parameters τ and ωji. We apply a stan-
dard procedure of variational approximation as is provided
in [4] by assuming that the variational posterior is fully fac-
torized. The lower bound of the log evidence can be obtained
by applying Jensen’s inequality as follows:

log p(x|α, β, γ) ≥
∫ ∑

z

q(z|π)q(θ|λ)q(ϕ|µ)q(R|ν)

· log p(x|z, ϕ)p(z|θ,R)p(θ|α)p(ϕ|β)p(R|γ)
q(z|π)q(θ|λ)q(ϕ|µ)q(R|ν) dθdϕdR (11)

We denote the left hand side of Eq. (11) simply by L. For
convenience, we use the following notations: λj0 ≡

∑
k λjk,

µk0 ≡
∑

w µkw, νk0 ≡
∑

k′ νkk′ , ⟨nkw⟩ ≡
∑

j πjwknjw and
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Figure 8: The function f(x) = xΨ′(x).

⟨njk⟩ ≡
∑

w πjwknjw. Then L can be expanded as follows:

L =
∑
k,w

⟨nkw⟩
{
Ψ(µkw)−Ψ(µk0)

}
+ (1− τ)

∑
j,k

⟨njk⟩
{
Ψ(λjk)−Ψ(λk0)

}
+ τ

∑
j,k

⟨njk⟩
∑
j′

ωjj′
∑
k′

λj′k′

λj′0

{
Ψ(νk′k)−Ψ(νk′0)

}
+ J log Γ(α0)− J

∑
k

log Γ(αk)−
∑
j

log Γ(λj0)

+
∑
j,k

log Γ(λjk) +
∑
j,k

(αk − λjk)
{
Ψ(λjk)−Ψ(λj0)

}
+K log Γ(β0)−K

∑
w

log Γ(βw)−
∑
k

log Γ(µk0)

+
∑
k,w

log Γ(µkw) +
∑
k,w

(βw − µkw)
{
Ψ(µkw)−Ψ(µk0)

}
+K log Γ(γ0)−K

∑
k′

log Γ(γk′)−
∑
k

log Γ(νk0)

+
∑
k,k′

log Γ(νkk′) +
∑
k,k′

(γk′ − νkk′)
{
Ψ(νkk′)−Ψ(νk0)

}
−

∑
j,w

njw

∑
k

πjwk log πjwk. (12)

where the third term is obtained by an additional application
of Jensen’s inequality to the log of the linear combination of
topic multinomial parameters in Eq. (1).
It is a complicated process to optimize L with respect to

λjk. By differentiating L with respect to λjk, we obtain:

∂L
∂λjk

=
{
(1− τ)⟨njk⟩ − (λjk − αk)

}
Ψ′(λjk)

−
{
(1− τ)nj − (λj0 − α0)

}
Ψ′(λj0)

+
τ

λj0

∑
j′

ωj′j

∑
k′

⟨nj′k′⟩
{
Ψ(νkk′)−Ψ(νk0)

}
− τ

λ2
j0

∑
j′

ωj′j

∑
k′

⟨nj′k′⟩
∑
k̃

λjk̃

{
Ψ(νk̃k′)−Ψ(νk̃0)

}
(13)

We introduce an approximation to Eq. (13) by assuming

λjkΨ
′(λjk) ≈ λj0Ψ

′(λj0) (14)

Figure 8 is a plot of the function f(x) = xΨ′(x). As this
graph shows, f(x) is almost equal to 1 for large values of x.
Therefore, our approximation works for larger values of λjk

and λj0. Consequently, we obtain the following derivative:

∂L
∂λjk

≈
{
(1− τ)⟨njk⟩ − (λjk − αk)

}
Ψ′(λjk)

−
{
(1− τ)nj − (λj0 − α0)

}
Ψ′(λj0)

+
τΨ′(λjk)

λj0

∑
j′

ωj′j

∑
k′

⟨nj′k′⟩Ψ(νkk′)−Ψ(νk0)

Ψ′(λjk)

− τΨ′(λj0)

λj0

∑
j′

ωj′j

∑
k′

⟨nj′k′⟩
∑
k̃

Ψ(νk̃k′)−Ψ(νk̃0)

Ψ′(λjk̃)
. (15)

Eq. (15) tells that ∂L/∂λjk = 0 holds when

λjk ≈ αk + (1− τ)⟨njk⟩

+
τ

λj0Ψ′(λjk)

∑
j′

ωj′j

∑
k′

⟨nj′k′⟩
{
Ψ(νkk′)−Ψ(νk0)

}
. (16)

This equation can be solved by a binary search with respect
to λjk as is discussed in Section 3.2.

It is an important future work to propose an inference
avoiding the approximation we introduce here, because we
apply this approximation as a last resort to achieve a non-
gradient-based and thus efficient inference. Although a gradient-
based inference was once implemented, the running time
was unacceptably long, because K dimensional optimization
problem should be solved for each of the J documents.

Further, we differentiate L with respect to νkk′ and obtain:

∂L
∂νkk′

= τΨ′(νkk′)
∑
j

⟨njk′⟩
∑
j′

ωjj′
λj′k

λj′0

− τΨ′(νk0)
∑
k′

∑
j

⟨njk′⟩
∑
j′

ωjj′
λj′k

λj′0

+ (γk′ − νkk′)Ψ′(νkk′)−Ψ′(νk0)
∑
k̃

(γk̃ − νkk̃) (17)

Therefore, νkk′ can be updated as:

νkk′ = γk′ + τ
∑
j

⟨njk′⟩
∑
j′

ωjj′
λj′k

λj′0
(18)


